plotKML-method {plotKML} | R Documentation |
The method writes inputs and outputs of spatial analysis (a list of point, gridded and/or polygon data usually) to KML and opens the KML file in Google Earth (or any other default package used to view KML/KMZ files).
## S4 method for signature 'SpatialPointsDataFrame' plotKML(obj, folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))), file.name = paste(folder.name, ".kml", sep=""), size, colour, points_names, shape = "http://maps.google.com/mapfiles/kml/pal2/icon18.png", metadata = NULL, kmz = get("kmz", envir = plotKML.opts), open.kml = TRUE, ...) ## S4 method for signature 'SpatialLinesDataFrame' plotKML(obj, folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))), file.name = paste(folder.name, ".kml", sep=""), metadata = NULL, kmz = get("kmz", envir = plotKML.opts), open.kml = TRUE, ...) ## S4 method for signature 'SpatialPolygonsDataFrame' plotKML(obj, folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))), file.name = paste(folder.name, ".kml", sep=""), colour, plot.labpt, labels, metadata = NULL, kmz = get("kmz", envir = plotKML.opts), open.kml = TRUE, ...) ## S4 method for signature 'SpatialPixelsDataFrame' plotKML(obj, folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))), file.name = paste(folder.name, ".kml", sep=""), colour, raster_name, metadata = NULL, kmz = FALSE, open.kml = TRUE, ...) ## S4 method for signature 'SpatialGridDataFrame' plotKML(obj, folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))), file.name = paste(folder.name, ".kml", sep=""), colour, raster_name, metadata = NULL, kmz = FALSE, open.kml = TRUE, ...) ## S4 method for signature 'RasterLayer' plotKML(obj, folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))), file.name = paste(folder.name, ".kml", sep=""), colour, raster_name, metadata = NULL, kmz = FALSE, open.kml = TRUE, ...) ## S4 method for signature 'SpatialPhotoOverlay' plotKML(obj, folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))), file.name = paste(folder.name, ".kml", sep=""), dae.name, kmz = get("kmz", envir = plotKML.opts), open.kml = TRUE, ...) ## S4 method for signature 'SoilProfileCollection' plotKML(obj, folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))), file.name = paste(folder.name, ".kml", sep=""), var.name, metadata = NULL, kmz = get("kmz", envir = plotKML.opts), open.kml = TRUE, ...) ## S4 method for signature 'STIDF' plotKML(obj, folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))), file.name = paste(folder.name, ".kml", sep=""), colour, shape = "http://maps.google.com/mapfiles/kml/pal2/icon18.png", points_names, kmz = get("kmz", envir = plotKML.opts), open.kml = TRUE, ...) ## S4 method for signature 'STFDF' plotKML(obj, ...) ## S4 method for signature 'STSDF' plotKML(obj, ...) ## S4 method for signature 'STTDF' plotKML(obj, folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))), file.name = paste(folder.name, ".kml", sep=""), colour, start.icon = "http://maps.google.com/mapfiles/kml/pal2/icon18.png", kmz = get("kmz", envir = plotKML.opts), open.kml = TRUE, ...) ## S4 method for signature 'RasterBrickTimeSeries' plotKML(obj, folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))), file.name = paste(folder.name, ".kml", sep=""), pngwidth = 680, pngheight = 180, pngpointsize = 14, kmz = get("kmz", envir = plotKML.opts), open.kml = TRUE, ...) ## S4 method for signature 'RasterBrickSimulations' plotKML(obj, folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))), file.name = paste(folder.name, ".kml", sep=""), obj.summary = TRUE, pngwidth = 680, pngheight = 200, pngpointsize = 14, kmz = get("kmz", envir = plotKML.opts), open.kml = TRUE, ...) ## S4 method for signature 'SpatialMaxEntOutput' plotKML(obj, folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))), file.name = paste(folder.name, ".kml", sep=""), html.file = obj@maxent@html, iframe.width = 800, iframe.height = 800, pngwidth = 280, pngheight = 280, pngpointsize = 14, colour, shape = "http://plotkml.r-forge.r-project.org/icon17.png", kmz = get("kmz", envir = plotKML.opts), open.kml = TRUE, TimeSpan.begin = obj@TimeSpan.begin, TimeSpan.end = obj@TimeSpan.end, ...) ## S4 method for signature 'SpatialPredictions' plotKML(obj, folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))), file.name = paste(folder.name, ".kml", sep=""), colour, grid2poly = FALSE, obj.summary = TRUE, plot.svar = FALSE, pngwidth = 210, pngheight = 580, pngpointsize = 14, metadata = NULL, kmz = get("kmz", envir = plotKML.opts), open.kml = TRUE, ...) ## S4 method for signature 'SpatialSamplingPattern' plotKML(obj, folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))), file.name = paste(folder.name, ".kml", sep=""), colour, kmz = get("kmz", envir = plotKML.opts), open.kml = TRUE, ...) ## S4 method for signature 'SpatialVectorsSimulations' plotKML(obj, folder.name = normalizeFilename(deparse(substitute(obj, env = parent.frame()))), file.name = paste(folder.name, ".kml", sep=""), colour, grid2poly = FALSE, obj.summary = TRUE, plot.svar = FALSE, kmz = get("kmz", envir = plotKML.opts), open.kml = TRUE, ...) ## S4 method for signature 'list' plotKML(obj, folder.name = normalizeFilename(deparse(substitute(obj, env=parent.frame()))), file.name = paste(folder.name, ".kml", sep=""), size = NULL, colour, points_names = "", shape = "http://maps.google.com/mapfiles/kml/pal2/icon18.png", plot.labpt = TRUE, labels = "", metadata = NULL, kmz = get("kmz", envir = plotKML.opts), open.kml = TRUE, ...)
obj |
input object of specific class; either some sp, or raster or spacetime package class object, or plotKML composite objects containing both inputs and outputs of analysis |
folder.name |
character; folder name in the KML file |
file.name |
character; output KML file name |
size |
for point objects for plotting (see aesthetics) |
colour |
colour variable for plotting (see aesthetics) |
points_names |
vector of characters that can be used as labels |
shape |
character; icons used for plotting (see aesthetics) |
raster_name |
(optional) specify the output file name (PNG) |
var.name |
target variable name (only valid for visualization of |
metadata |
(optional) the metadata object |
plot.labpt |
logical; specifies whether to plot centroids for polygon data |
labels |
character vector; list of labels that will attached to the centroids |
start.icon |
icon for the start position (for trajectory data) |
dae.name |
output DAE file name |
html.file |
specify the location of the html file containing report data (if the input object is of class |
iframe.width |
integer; width of the screen for iframe |
iframe.height |
integer; height of the screen for iframe |
TimeSpan.begin |
object of class |
TimeSpan.end |
object of class |
pngwidth |
integer; width of the PNG plot (screen image) |
pngheight |
integer; height of the PNG plot (screen image) |
pngpointsize |
integer; text size in the PNG plot (screen image) |
grid2poly |
logical; specifies whether to convert gridded object to polygons |
obj.summary |
logical; specifies whether to print the object summary |
plot.svar |
logical; specifies whether to plot the model uncertainty |
kmz |
logical; specifies whether to compress the output KML file |
open.kml |
logical; specifies whether to directly open the output KML file (i.e. in Google Earth) |
... |
(optional) arguments passed to the lower level functions |
This is a generic function to plot various spatial and spatio-temporal R objects that contain both inputs and outputs of spatial analysis. The resulting plots (referred to as ‘views’) are expected to be cartographically complete as they should contain legends, and data and model descriptions. In principle, plotKML
works with both simple spatial objects, and complex objects such as "SpatialPredictions"
, "SpatialVectorsSimulations"
, "RasterBrickSimulations"
, "RasterBrickTimeSeries"
, "SpatialMaxEntOutput"
and similar. To further customize visualizations consider combining the lower level functions kml_open
, kml_close
, kml_compress
, kml_screen
into your own plotKML()
method.
All ST-classes are coerced to the STIDF format and hence use the plotKML method for STIDFs.
To prepare a list of objects of class "SpatialPointsDataFrame"
, "SpatialLinesDataFrame"
, "SpatialPolygonsDataFrame"
, or "SpatialPixelsDataFrame"
consider using the GSIF::tile
function. Writting large spatial objects via plotKML can be time consuming. Please refer to the package manual for more information.
SpatialPredictions-class
, SpatialVectorsSimulations-class
, RasterBrickSimulations-class
, RasterBrickTimeSeries-class
, SpatialMaxEntOutput-class
, SpatialSamplingPattern-class
plotKML.env(silent = FALSE, kmz = FALSE) ## -------------- SpatialPointsDataFrame --------- ## library(sp) library(rgdal) data(eberg) coordinates(eberg) <- ~X+Y proj4string(eberg) <- CRS("+init=epsg:31467") ## subset to 20 percent: eberg <- eberg[runif(nrow(eberg))<.1,] ## Not run: ## bubble type plot: plotKML(eberg["CLYMHT_A"]) plotKML(eberg["CLYMHT_A"], colour_scale=rep("#FFFF00", 2), points_names="") ## End(Not run) ## plot points with a legend: shape = "http://maps.google.com/mapfiles/kml/pal2/icon18.png" kml_open("eberg_CLYMHT_A.kml") kml_layer(eberg["CLYMHT_A"], colour=CLYMHT_A, z.lim=c(20,60), colour_scale=SAGA_pal[[1]], shape=shape, points_names="") kml_legend.bar(x=eberg$CLYMHT_A, legend.file="kml_legend.png", legend.pal=SAGA_pal[[1]], z.lim=c(20,60)) kml_screen(image.file="kml_legend.png") kml_close("eberg_CLYMHT_A.kml") ## -------------- SpatialLinesDataFrame --------- ## data(eberg_contours) ## Not run: plotKML(eberg_contours) ## plot contour lines with actual altitudes: plotKML(eberg_contours, colour=Z, altitude=Z) ## End(Not run) ## -------------- SpatialPolygonsDataFrame --------- ## data(eberg_zones) ## Not run: plotKML(eberg_zones["ZONES"]) ## add altitude: zmin = 230 plotKML(eberg_zones["ZONES"], altitude=zmin+runif(length(eberg_zones))*500) ## End(Not run) ## -------------- SpatialPixelsDataFrame --------- ## library(rgdal) library(raster) data(eberg_grid) gridded(eberg_grid) <- ~x+y proj4string(eberg_grid) <- CRS("+init=epsg:31467") TWI <- reproject(eberg_grid["TWISRT6"]) data(SAGA_pal) ## Not run: ## set limits manually (increase resolution): plotKML(TWI, colour_scale = SAGA_pal[[1]]) plotKML(TWI, z.lim=c(12,20), colour_scale = SAGA_pal[[1]]) ## End(Not run) ## categorical data: eberg_grid$LNCCOR6 <- as.factor(paste(eberg_grid$LNCCOR6)) levels(eberg_grid$LNCCOR6) data(worldgrids_pal) ## attr(worldgrids_pal["corine2k"][[1]], "names") pal = as.character(worldgrids_pal["corine2k"][[1]][c(1,11,13,14,16,17,18)]) LNCCOR6 <- reproject(eberg_grid["LNCCOR6"]) ## Not run: plotKML(LNCCOR6, colour_scale=pal) ## End(Not run) ## -------------- SpatialPhotoOverlay --------- ## ## Not run: library(RCurl) imagename = "Soil_monolith.jpg" urlExists = url.exists("http://commons.wikimedia.org") if(urlExists){ x1 <- getWikiMedia.ImageInfo(imagename) sm <- spPhoto(filename = x1$url$url, exif.info = x1$metadata) # str(sm) plotKML(sm) } ## End(Not run) ## -------------- SoilProfileCollection --------- ## library(aqp) library(plyr) ## sample profile from Nigeria: lon = 3.90; lat = 7.50; id = "ISRIC:NG0017"; FAO1988 = "LXp" top = c(0, 18, 36, 65, 87, 127) bottom = c(18, 36, 65, 87, 127, 181) ORCDRC = c(18.4, 4.4, 3.6, 3.6, 3.2, 1.2) hue = c("7.5YR", "7.5YR", "2.5YR", "5YR", "5YR", "10YR") value = c(3, 4, 5, 5, 5, 7); chroma = c(2, 4, 6, 8, 4, 3) ## prepare a SoilProfileCollection: prof1 <- join(data.frame(id, top, bottom, ORCDRC, hue, value, chroma), data.frame(id, lon, lat, FAO1988), type='inner') prof1$soil_color <- with(prof1, munsell2rgb(hue, value, chroma)) depths(prof1) <- id ~ top + bottom site(prof1) <- ~ lon + lat + FAO1988 coordinates(prof1) <- ~ lon + lat proj4string(prof1) <- CRS("+proj=longlat +datum=WGS84") prof1 ## Not run: plotKML(prof1, var.name="ORCDRC", color.name="soil_color") ## End(Not run) ## -------------- STIDF --------- ## library(sp) library(spacetime) ## daily temperatures for Croatia: data(HRtemp08) ## format the time column: HRtemp08$ctime <- as.POSIXct(HRtemp08$DATE, format="%Y-%m-%dT%H:%M:%SZ") ## create a STIDF object: sp <- SpatialPoints(HRtemp08[,c("Lon","Lat")]) proj4string(sp) <- CRS("+proj=longlat +datum=WGS84") HRtemp08.st <- STIDF(sp, time = HRtemp08$ctime, data = HRtemp08[,c("NAME","TEMP")]) ## subset to first 500 records: HRtemp08_jan <- HRtemp08.st[1:500] str(HRtemp08_jan) ## Not run: plotKML(HRtemp08_jan[,,"TEMP"], LabelScale = .4) ## End(Not run) ## foot-and-mouth disease data: data(fmd) fmd0 <- data.frame(fmd) coordinates(fmd0) <- c("X", "Y") proj4string(fmd0) <- CRS("+init=epsg:27700") fmd_sp <- as(fmd0, "SpatialPoints") dates <- as.Date("2001-02-18")+fmd0$ReportedDay library(spacetime) fmd_ST <- STIDF(fmd_sp, dates, data.frame(ReportedDay=fmd0$ReportedDay)) data(SAGA_pal) ## Not run: plotKML(fmd_ST, colour_scale=SAGA_pal[[1]]) ## End(Not run) ## -------------- STFDF --------- ## ## results of krigeST: library(gstat) library(sp) library(spacetime) library(raster) ## define space-time variogram sumMetricVgm <- vgmST("sumMetric", space=vgm( 4.4, "Lin", 196.6, 3), time =vgm( 2.2, "Lin", 1.1, 2), joint=vgm(34.6, "Exp", 136.6, 12), stAni=51.7) ## example from the gstat package: data(air) rural = STFDF(stations, dates, data.frame(PM10 = as.vector(air))) rr <- rural[,"2005-06-01/2005-06-03"] rr <- as(rr,"STSDF") x1 <- seq(from=6,to=15,by=1) x2 <- seq(from=48,to=55,by=1) DE_gridded <- SpatialPoints(cbind(rep(x1,length(x2)), rep(x2,each=length(x1))), proj4string=CRS(proj4string(rr@sp))) gridded(DE_gridded) <- TRUE DE_pred <- STF(sp=as(DE_gridded,"SpatialPoints"), time=rr@time) DE_kriged <- krigeST(PM10~1, data=rr, newdata=DE_pred, modelList=sumMetricVgm) gridded(DE_kriged@sp) <- TRUE stplot(DE_kriged) ## plot in Google Earth: z.lim = range(DE_kriged@data, na.rm=TRUE) ## Not run: plotKML(DE_kriged, z.lim=z.lim) ## add observations points: plotKML(rr, z.lim=z.lim) ## End(Not run) ## -------------- STTDF --------- ## ## Not run: library(fossil) library(spacetime) library(adehabitatLT) data(gpxbtour) ## format the time column: gpxbtour$ctime <- as.POSIXct(gpxbtour$time, format="%Y-%m-%dT%H:%M:%SZ") coordinates(gpxbtour) <- ~lon+lat proj4string(gpxbtour) <- CRS("+proj=longlat +datum=WGS84") xy <- as.list(data.frame(t(coordinates(gpxbtour)))) gpxbtour$dist.km <- sapply(xy, function(x) { deg.dist(long1=x[1], lat1=x[2], long2=xy[[1]][1], lat2=xy[[1]][2]) } ) ## convert to a STTDF class: gpx.ltraj <- as.ltraj(coordinates(gpxbtour), gpxbtour$ctime, id = "th") gpx.st <- as(gpx.ltraj, "STTDF") gpx.st$speed <- gpxbtour$speed gpx.st@sp@proj4string <- CRS("+proj=longlat +datum=WGS84") str(gpx.st) plotKML(gpx.st, colour="speed") ## End(Not run) ## -------------- Spatial Metadata --------- ## ## Not run: eberg.md <- spMetadata(eberg, xml.file=system.file("eberg.xml", package="plotKML"), Target_variable="SNDMHT_A", Citation_title="Ebergotzen profiles") plotKML(eberg[1:100,"CLYMHT_A"], metadata=eberg.md) ## End(Not run) ## -------------- RasterBrickTimeSeries --------- ## library(raster) library(sp) data(LST) gridded(LST) <- ~lon+lat proj4string(LST) <- CRS("+proj=longlat +datum=WGS84") dates <- sapply(strsplit(names(LST), "LST"), function(x){x[[2]]}) datesf <- format(as.Date(dates, "%Y_%m_%d"), "%Y-%m-%dT%H:%M:%SZ") ## begin / end dates +/- 4 days: TimeSpan.begin = as.POSIXct(unclass(as.POSIXct(datesf))-4*24*60*60, origin="1970-01-01") TimeSpan.end = as.POSIXct(unclass(as.POSIXct(datesf))+4*24*60*60, origin="1970-01-01") ## pick climatic stations in the area: pnts <- HRtemp08[which(HRtemp08$NAME=="Pazin")[1],] pnts <- rbind(pnts, HRtemp08[which(HRtemp08$NAME=="Crni Lug - NP Risnjak")[1],]) pnts <- rbind(pnts, HRtemp08[which(HRtemp08$NAME=="Cres")[1],]) coordinates(pnts) <- ~Lon + Lat proj4string(pnts) <- CRS("+proj=longlat +datum=WGS84") ## get the dates from the file names: LST_ll <- brick(LST[1:5]) LST_ll@title = "Time series of MODIS Land Surface Temperature images" LST.ts <- new("RasterBrickTimeSeries", variable = "LST", sampled = pnts, rasters = LST_ll, TimeSpan.begin = TimeSpan.begin[1:5], TimeSpan.end = TimeSpan.end[1:5]) data(SAGA_pal) ## Not run: ## plot MODIS images in Google Earth: plotKML(LST.ts, colour_scale=SAGA_pal[[1]]) ## End(Not run) ## -------------- Spatial Predictions --------- ## library(sp) library(rgdal) library(gstat) data(meuse) coordinates(meuse) <- ~x+y proj4string(meuse) <- CRS("+init=epsg:28992") ## load grids: data(meuse.grid) gridded(meuse.grid) <- ~x+y proj4string(meuse.grid) <- CRS("+init=epsg:28992") ## Not run: ## fit a model: library(GSIF) omm <- fit.gstatModel(observations = meuse, formulaString = om~dist, family = gaussian(log), covariates = meuse.grid) ## produce SpatialPredictions: om.rk <- predict(omm, predictionLocations = meuse.grid) ## plot the whole geostatical mapping project in Google Earth: plotKML(om.rk, colour_scale = SAGA_pal[[1]]) ## plot each cell as polygon: plotKML(om.rk, colour_scale = SAGA_pal[[1]], grid2poly = TRUE) ## End(Not run) ## -------------- SpatialSamplingPattern --------- ## ## Not run: library(spcosa) library(sp) ## read a polygon map: shpFarmsum <- readOGR(dsn = system.file("maps", package = "spcosa"), layer = "farmsum") ## stratify `Farmsum' into 50 strata myStratification <- stratify(shpFarmsum, nStrata = 50) ## sample two sampling units per stratum mySamplingPattern <- spsample(myStratification, n = 2) ## attach the correct proj4 string: library(RCurl) urlExists = url.exists("http://spatialreference.org/ref/sr-org/6781/proj4/") if(urlExists){ nl.rd <- getURL("http://spatialreference.org/ref/sr-org/6781/proj4/") proj4string(mySamplingPattern@sample) <- CRS(nl.rd) # prepare spatial domain (polygons): sp.domain <- as(myStratification@cells, "SpatialPolygons") sp.domain <- SpatialPolygonsDataFrame(sp.domain, data.frame(ID=as.factor(myStratification@stratumId)), match.ID = FALSE) proj4string(sp.domain) <- CRS(nl.rd) # create new object: mySamplingPattern.ssp <- new("SpatialSamplingPattern", method = class(mySamplingPattern), pattern = mySamplingPattern@sample, sp.domain = sp.domain) # the same plot now in Google Earth: shape = "http://maps.google.com/mapfiles/kml/pal2/icon18.png" plotKML(mySamplingPattern.ssp, shape = shape) } ## End(Not run) ## -------------- RasterBrickSimulations --------- ## ## Not run: library(sp) library(gstat) data(barxyz) ## define the projection system: prj = "+proj=tmerc +lat_0=0 +lon_0=18 +k=0.9999 +x_0=6500000 +y_0=0 +ellps=bessel +units=m +towgs84=550.499,164.116,475.142,5.80967,2.07902,-11.62386,0.99999445824" coordinates(barxyz) <- ~x+y proj4string(barxyz) <- CRS(prj) data(bargrid) coordinates(bargrid) <- ~x+y gridded(bargrid) <- TRUE proj4string(bargrid) <- CRS(prj) ## fit a variogram and generate simulations: Z.ovgm <- vgm(psill=1352, model="Mat", range=650, nugget=0, kappa=1.2) sel <- runif(length(barxyz$Z))<.2 ## Note: this operation can be time consuming sims <- krige(Z~1, barxyz[sel,], bargrid, model=Z.ovgm, nmax=20, nsim=10, debug.level=-1) ## specify the cross-section: t1 <- Line(matrix(c(bargrid@bbox[1,1], bargrid@bbox[1,2], 5073012, 5073012), ncol=2)) transect <- SpatialLines(list(Lines(list(t1), ID="t")), CRS(prj)) ## glue to a RasterBrickSimulations object: library(raster) bardem_sims <- new("RasterBrickSimulations", variable = "elevations", sampled = transect, realizations = brick(sims)) ## plot the whole project and open in Google Earth: data(R_pal) plotKML(bardem_sims, colour_scale = R_pal[[4]]) ## End(Not run) ## -------------- SpatialVectorsSimulations --------- ## ## Not run: data(barstr) data(bargrid) library(sp) coordinates(bargrid) <- ~ x+y gridded(bargrid) <- TRUE ## output topology: cell.size = bargrid@grid@cellsize[1] bbox = bargrid@bbox nrows = round(abs(diff(bbox[1,])/cell.size), 0) ncols = round(abs(diff(bbox[2,])/cell.size), 0) gridT = GridTopology(cellcentre.offset=bbox[,1], cellsize=c(cell.size,cell.size), cells.dim=c(nrows, ncols)) bar_sum <- count.GridTopology(gridT, vectL=barstr[1:5]) ## NOTE: this operation can be time consuming! ## plot the whole project and open in Google Earth: plotKML(bar_sum) ## End(Not run) ## -------------- SpatialMaxEntOutput --------- ## ## Not run: library(maptools) library(rgdal) data(bigfoot) aea.prj <- "+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=23 +lon_0=-96 +x_0=0 +y_0=0 +ellps=GRS80 +datum=NAD83 +units=m +no_defs" data(USAWgrids) gridded(USAWgrids) <- ~s1+s2 proj4string(USAWgrids) <- CRS(aea.prj) bbox <- spTransform(USAWgrids, CRS("+proj=longlat +datum=WGS84"))@bbox sel = bigfoot$Lon > bbox[1,1] & bigfoot$Lon < bbox[1,2] & bigfoot$Lat > bbox[2,1] & bigfoot$Lat < bbox[2,2] bigfoot <- bigfoot[sel,] coordinates(bigfoot) <- ~Lon+Lat proj4string(bigfoot) <- CRS("+proj=longlat +datum=WGS84") library(spatstat) bigfoot.aea <- as.ppp(spTransform(bigfoot, CRS(aea.prj))) ## Load the covariates: sel.grids <- c("globedem","nlights03","sdroads","gcarb","twi","globcov") library(GSIF) library(dismo) ## run MaxEnt analysis: jar <- paste(system.file(package="dismo"), "/java/maxent.jar", sep='') if(file.exists(jar)){ bigfoot.smo <- MaxEnt(bigfoot.aea, USAWgrids[sel.grids]) icon = "http://plotkml.r-forge.r-project.org/bigfoot.png" data(R_pal) plotKML(bigfoot.smo, colour_scale = R_pal[["bpy_colors"]], shape = icon) } ## End(Not run)